Toxicokinetics Data Summary

Test Compound: Bromochloroacetic Acid

CAS Number: 5589-96-8

Date Report Requested: 02/06/2017 Time Report Requested: 17:12:55

Lab: Battelle Columbus

Route: Dosed Water, Dosed Water and Gavage Challenge, Gavage, IV
Species/Strain: Rat/F344

			Male						
	Treatment Groups (mg/kg)								
	2.88 a, #, 2	2.88 b, #, 1	10 c, #, 3	28.8 a, #, 2	28.8 d, #, 1	40 e, #, 3			
	Plasma Plasma								
C _{max(pred)} (ug/mL)	0.248 ± 0.025		0.475 ± 0.031	10.7 ± 0.7		6.74 ± 0.33			
T _{max(pred)} (min)	14.2 ± 4.0		21.9 ± 1.9	29.4 ± 3.0		53.2 ± 2.6			
C _{max(obs)} (ug/mL)		0.0801			2.66				
T _{max(obs)} (hour)		24			24				
Lambdaz (min^-1)									
t _{1/2} (min)									
t _{1/2(Alpha)} (min)									
t _{1/2(Beta)} (min)									
k ₀₁ (min^-1)	0.224 ± 0.115		0.0457 ± 0.0039	0.0709 ± 0.0138		0.0188 ± 9.0E-4			
t _{1/2(k01)} (min)	3.09 ± 1.58		15.2 ± 1.3	9.78 ± 1.90		36.9 ± 1.8			
k ₁₀ (min^-1)	0.0107 ± 0.0058		0.0457 ± 0.0039	0.0128 ± 0.0010		0.0188 ± 9.0E-4			
t _{1/2(k10)} (min)	64.8 ± 35.3		15.2 ± 1.3	54.1 ± 4.3		36.9 ± 1.8			
k ₁₂ (min^-1)									
k ₂₁ (min^-1)									
CI (mL/min/kg)									
Cl ₁ (mL/min/kg)									
CI _{1(F)} (mL/min/kg)	107 ± 41		354 ± 37	23.6 ± 1.4		41.0 ± 2.5			
V ₁ (mL/kg)									
V ₂ (mL/kg)									
V _{1(F)} (mL/kg)	9990 ± 1890		7750 ± 510	1840 ± 210		2180 ± 110			
MRT (min)									
AUC _{0-t} (ug/mL*min)	9.56		25.5	1200		1090			
AUC _{inf} (ug/mL*min)	26.9 ± 10.3		28.2 ± 3.0	1220 ± 70		976 ± 61			

Toxicokinetics Data Summary

Test Compound: Bromochloroacetic Acid

CAS Number: 5589-96-8

Date Report Requested: 02/06/2017 Time Report Requested: 17:12:55

Lab: Battelle Columbus

Route: Dosed Water, Dosed Water and Gavage Challenge, Gavage, IV

Species/Strain:	Rat/F344
-----------------	----------

			Male					
	Treatment Groups (mg/kg)							
	57.6 a, #, 2	57.6 ^{d, #, 1} 100 ^{h, #, 3}	10 IV ^{f, o, 4}	10 IV ^{g, *, 4}	10 IV i, #, 4	80 IV ^{j, #, 4}		
			Plasma					
C _{max(pred)} (ug/mL)	25.4 ± 5.7	28.1 ± 1.9		21.6 ± 5.4	20.2 ± 2.1			
T _{max(pred)} (min)	21.0 ± 11.1	61.4 ± 3.4						
C _{max(obs)} (ug/mL)		5.17						
T _{max(obs)} (hour)		24						
Lambdaz (min^-1)			0.236					
t _{1/2} (min)			2.94					
t _{1/2(Alpha)} (min)				1.96 ± 0.76				
t _{1/2(Beta)} (min)				9.48 ± 0.51				
k ₀₁ (min^-1)	0.145 ± 0.114	$0.0163 \pm 9.0E-4$						
t _{1/2(k01)} (min)	4.78 ± 3.76	42.5 ± 2.3			5.86 ± 0.25			
k ₁₀ (min^-1)	0.00814 ± 0.00170	$0.0163 \pm 9.0E-4$		0.156 ± 0.033	0.118 ± 0.005	0.0260		
t _{1/2(k10)} (min)	85.2 ± 17.7	42.5 ± 2.3		4.46 ± 0.96				
k ₁₂ (min^-1)				0.105 ± 0.072				
k ₂₁ (min^-1)				0.166 ± 0.044				
Cl (mL/min/kg)			126		58.5 ± 4.6			
Cl ₁ (mL/min/kg)				71.9 ± 4.3				
CI _{1(F)} (mL/min/kg)	15.6 ± 2.9	21.3 ± 1.8						
V ₁ (mL/kg)			534	462 ± 116	494 ± 52			
V ₂ (mL/kg)				291 ± 75				
V _{1(F)} (mL/kg)	1910 ± 570	1310 ± 90						
MRT (min)			3.10	10.5 ± 0.5	8.46 ± 0.36			
AUC _{0-t} (ug/mL*min)	3770	4920	79.0	143				
AUC _{inf} (ug/mL*min)	3700 ± 700	4690 ± 390	79.4	139 ± 8	171 ± 13			

Toxicokinetics Data Summary

Test Compound: Bromochloroacetic Acid

CAS Number: 5589-96-8

Date Report Requested: 02/06/2017 Time Report Requested: 17:12:55

Lab: Battelle Columbus

Route: Dosed Water, Dosed Water and Gavage Challenge, Gavage, IV

Species/Strain: Rat/F344

			Female							
	Treatment Groups (mg/kg)									
	2.74 a, #, 2	2.74 b, #, 1	10 k, #, 3	27.4 a, #, 2	27.4 d, #, 1	40 l, #, 3				
	Plasma									
Cmax(pred) (ug/mL)	0.412 ± 0.026		0.599 ± 0.026	12.9 ± 1.5		11.6 ± 0.7				
T _{max(pred)} (min)	15.4 ± 1.6		17.8 ± 1.1	23.5 ± 4.8		45.4 ± 2.6				
C _{max(obs)} (ug/mL)		0.189			3.84					
T _{max(obs)} (hour)		24			15					
Lambdaz (min^-1)										
t _{1/2} (min)										
t _{1/2(Alpha)} (min)										
t _{1/2(Beta)} (min)										
k ₀₁ (min^-1)	0.154 ± 0.038		0.0560 ± 0.0035	0.102 ± 0.036		0.0220 ± 0.0013				
t _{1/2(k01)} (min)	4.49 ± 1.10		12.4 ± 0.8	6.82 ± 2.40		31.5 ± 1.8				
k ₁₀ (min^-1)	0.0193 ± 0.0047		0.0560 ± 0.0035	0.0125 ± 0.0015		0.0220 ± 0.0013				
t _{1/2(k10)} (min)	36.0 ± 8.8		12.4 ± 0.8	55.5 ± 6.7		31.5 ± 1.8				
k ₁₂ (min^-1)										
k ₂₁ (min^-1)										
CI (mL/min/kg)										
Cl ₁ (mL/min/kg)										
CI _{1(F)} (mL/min/kg)	95.3 ± 11.9		344 ± 26	19.8 ± 1.9		27.9 ± 2.1				
V ₁ (mL/kg)										
V ₂ (mL/kg)										
V _{1(F)} (mL/kg)	4940 ± 710		6140 ± 270	1590 ± 280		1270 ± 80				
MRT (min)										
AUC _{0-t} (ug/mL*min)	17.5		33.0	1260		1290				
AUC _{inf} (ug/mL*min)	28.7 ± 3.6		29.1 ± 2.2	1380 ± 130		1430 ± 110				

Species/Strain: Rat/F344

Route: Dosed Water, Dosed Water and Gavage Challenge, Gavage, IV

Toxicokinetics Data Summary

Test Compound: Bromochloroacetic Acid

CAS Number: 5589-96-8

Date Report Requested: 02/06/2017 Time Report Requested: 17:12:55

Lab: Battelle Columbus

					F	emale				
	Treatment Groups (mg/kg)									
	54.9 a, #, 2	54.9 d, #, 1	10	00 ^{I, #,}	3	10 IV ^{f, o, 4}	10 IV	y g, *, 4	10 IV i, #, 4	80 IV ^{j, #, 4}
						Plasma				
C _{max(pred)} (ug/mL)	31.5 ± 3.4		44.7	±	3.0		13.5	± 1.0	25.6 ± 3.2	
Tmax(pred) (min)	23.7 ± 4.9		58.0	±	3.3					
$C_{max(obs)}$ (ug/mL)		7.36								
T _{max(obs)} (hour)		24								
Lambdaz (min^-1)						0.314				
t _{1/2} (min)						2.21				
t _{1/2(Alpha)} (min)							4.99	± 0.50		
$t_{1/2(Beta)}$ (min)							13.7	± 3.9		
k ₀₁ (min^-1)	0.111 ± 0.036		0.017	72 ±	0.0010					
t _{1/2(k01)} (min)	6.27 ± 2.06		40.2	±	2.3				5.54 ± 0.27	
k ₁₀ (min^-1)	0.0103 ± 9.0E-4		0.017	72 ±	0.0010		0.126	± 0.007	0.125 ± 0.006	0.0279
t _{1/2(k10)} (min)	67.3 ± 5.7		40.2	±	2.3		5.52	± 0.30		
k ₁₂ (min^-1)							0.0079	95 ± 0.00352		
k ₂₁ (min^-1)							0.0562	2 ± 0.0189		
CI (mL/min/kg)						206			48.7 ± 4.7	
Cl ₁ (mL/min/kg)							92.9	± 3.4		
CI _{1(F)} (mL/min/kg)	14.1 ± 1.4		14.2	±	1.2					
V ₁ (mL/kg)						656	739	± 54	390 ± 49	
V ₂ (mL/kg)							105	± 16		
V _{1(F)} (mL/kg)	1370 ± 200		822	±	56					
MRT (min)						2.57	9.08	± 0.35	8.00 ± 0.39	
AUC _{0-t} (ug/mL*min)	3660		5600			46.7				
AUC _{inf} (ug/mL*min)	3900 ± 380		7050	± 6	800	48.5	108	± 4	205 ± 20	

Route: Dosed Water, Dosed Water and Gavage

Challenge, Gavage, IV **Species/Strain:** Rat/F344

Toxicokinetics Data Summary
Test Compound: Bromochloroacetic Acid
CAS Number: 5589-96-8

Time Report Requested: 17:12:55

Date Report Requested: 02/06/2017

Lab: Battelle Columbus

LEGEND

Data are displayed as mean ± SEM

MODELING METHOD & BEST FIT MODEL

- ^a WinNonlin, version 4.0, 5.0, or 5.0.1, Pharsight Corporation, Mountain View, CA; One-compartment model with first order absorption and elimination. Parameter estimates and SEM are reported to three significant figures.
- ^b WinNonlin, version 4.0, 5.0, or 5.0.1, Pharsight Corporation, Mountain View, CA; No kinetic modeling was possible for the non-challenge group animals. Almost all the BCA plasma concentration values were BLOQ of 0.0750 ug/mL. GXA and OXA plasma concentrations were BLOQ or not detected.
- ^c WinNonlin Pharsight Corp; One-compartment model with equal first order absorption and elimination no weighting. Model 5 where ka equals ke (a one-compartment model with equal first order absorption and elimination). Parameter estimates and SEM are reported to three significant figures. GXA and OXA plasma concentration time point data were not presented because all values were BLOQ (4.209 ug/mL GXA and 4.192 ug/mL OXA).
- ^d WinNonlin, version 4.0, 5.0, or 5.0.1, Pharsight Corporation, Mountain View, CA; No extensive TK analysis was performed for the non-challenge group data, however, non-compartmental analysis was used to determine Cmax and AUC values for the mid and high dose BCA groups for the purpose of examining dose proportionality. No kinetic modeling was possible for the non-challenge group animals for GXA and OXA. The plasma concentrations of GXA and OXA were either BLOQ (4.349 and 4.169 μg/mL, respectively), or not detected, for all dosage groups.
- ^e WinNonlin Pharsight Corp; One-compartment model with equal first order absorption and elimination 1/Y weighting. Model 5 where ka equals ke (a one-compartment model with equal first order absorption and elimination). Parameter estimates and SEM are reported to three significant figures. GXA and OXA plasma concentration time point data were not presented because all values were BLOQ (4.209 ug/mL GXA and 4.192 ug/mL OXA).
- WinNonlin Pharsight Corp; Noncompartmental analysis using the mean plasma concentration time. The BCA minus isomer was eliminated much faster than BCA plus isomer for rats and mice.
- ⁹ WinNonlin Pharsight Corp; Two-compartment model with bolus input, first order output, and 1/Yhat2 weighting. The BCA minus isomer was eliminated much faster than BCA plus isomer for rats and mice.
- h WinNonlin Pharsight Corp; One-compartment model with equal first order absorption and elimination 1/Yhat weighting. Model 5 where ka equals ke (a one-compartment model with equal first order absorption and elimination). Parameter estimates and SEM are reported to three significant figures. GXA and OXA plasma concentration time point data were not presented because all values were BLOQ (4.209 ug/mL GXA and 4.192 ug/mL OXA).
- ¹ WinNonlin Pharsight Corp; one-compartment model with bolus input, first order output, and 1/Yhat2 weighting. Parameter estimates are reported to three significant figures.
- ^j Graphical Analysis; For the 80 mg/kg IV male and female rat groups, the partial BCA plasma concentration time data was evaluated using graphical analysis.
- ^k WinNonlin Pharsight Corp; One-compartment model with equal first order absorption and elimination no weighting. Model 5 where ka equals ke (a one-compartment model with equal first order absorption and elimination). Parameter estimates and SEM are reported to three significant figures. GXA and OXA plasma concentration time point data were not presented because all values were BLOQ (4.209 ug/mL GXA and 4.192 ug/mL OXA).
- WinNonlin Pharsight Corp; One-compartment model with equal first order absorption and elimination and 1/Yhat weighting. Model 5 where ka equals ke (a one-compartment model with equal first order absorption and elimination). Parameter estimates and SEM are reported to three significant figures. GXA and OXA plasma concentration time point data were not presented because all values were BLOQ (4.209 ug/mL GXA and 4.192 ug/mL OXA).

ANALYTE

- # Bromochloroacetic acid
- * Bromochloroacetic acid plus isomer
- ° Bromochloroacetic acid minus isomer

Route: Dosed Water, Dosed Water and Gavage

Challenge, Gavage, IV **Species/Strain:** Rat/F344

Toxicokinetics Data Summary
Test Compound: Bromochloroacetic Acid
CAS Number: 5589-96-8

Time Report Requested: 17:12:55 **Lab:** Battelle Columbus

Date Report Requested: 02/06/2017

LEGEND

ROUTE & DOSING

¹ Dosed Water: Animals exposed by drinking water ad libitum

- ² Dosed Water and Gavage Challenge: Animals exposed by drinking water ad libitum and by a single gavage administration on Study day 15
- ³ Gavage: Animals were administered a single gavage dose
- ⁴ IV: Animals were given a single bolus intravenous injection

TK PARAMETERS

C_{max} = Observed or Predicted Maximum plasma (or tissue) concentration

 T_{max} = Time at which C_{max} predicted or observed occurs

Lambda_z = Non-compartmental analysis (NCA) terminal elimination rate constant, NCA ke or kelim

 $t_{1/2}$ = Lambda_z half-life, $t_{1/2}$, the terminal elimination half-life based on non-compartmental analysis

 $t_{\frac{1}{2}(alpha)}$ = Half-life for the alpha phase

 $t_{\frac{1}{2}(beta)}$ = Half-life for the beta phase

 k_{01} = Absorption rate constant, k_a

 $t_{1/2(k01)}$ = Half-life of the absorption process to the central compartment

k₁₀ = Elimination rate constant from the central compartment also k_e or k_{elim}

 $t_{1/2(k_10)}$ = Half-life for the elimination process from the central compartment

 k_{12} = Distribution rate constant from first to second compartment etc.

 k_{21} = Distribution rate constant from second to first compartment etc.

CI = Clearance, includes total clearance

Cl₁ = Clearance of central compartment, Cl_{app} or apparent clearance for intravenous groups

Cl_{1(F)} = Apparent clearance of the central compartment, also Cl_(F) for gavage groups in non-compartmental model

 V_1 = Volume of distribution of the central compartment, includes V_d and V_{volume} of distribution, V_z apparent volume of distribution NCA, V_{app} apparent volume of distribution for intravenous studies

 V_2 = Volume of distribution for the peripheral compartment

 $V_{1(F)}$ = Apparent volume of distribution for the central compartment includes $V_{d(F)}$, $V_{(F)}$ for oral groups, and $V_{c(F)}$

MRT = Mean residence time

 $AUC_{0-t} = Area under the plasma concentration versus time curve, AUC, from time t_i (initial) to t_f (final), <math>AUC_{last}$

AUCinf = Area under the plasma concentration versus time curve, AUC, extrapolated to time equals infinity

** END OF REPORT **